SPH in spherical and cylindrical coordinates
نویسندگان
چکیده
New kernel functions for spherically, planar and cylindrically symmetric problems are developed, based on the fundamental interpolation theory of SPH. The Lagrangian formalism is used to derive the corresponding set of modified SPH equations of motion. The results show good agreement both with analytical and numerical results, in the case of the Sod shock tube test, the Noh infinite shock problem, and the Sedov point explosion test. The formulation has also been included in a complete 2D cylindrically symmetric problem of two colliding cylindrical shocks. The results clearly demonstrate the capability of the new formulation to solve the singularity problem at the symmetry axis.
منابع مشابه
High order schemes for cylindrical/spherical coordinates with radial symmetry
In this paper, we implement finite volume Weighted Essentially Non-Oscillatory (WENO) schemes in both cylindrical and spherical coordinate systems for the Euler equations with cylindrical or spherical symmetry. We analyze three different spatial discretizations: one that is shown to be high-order accurate but not conservative, one conservative but not high-order accurate, and one both high-orde...
متن کاملPositivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates
For a Lagrangian scheme defined in the cylindrical coordinates, two important issues are whether the scheme can maintain spherical symmetry (symmetry-preserving) and whether the scheme can maintain positivity of density and internal energy (positivity-preserving). While there were previous results in the literature either for symmetry-preserving in the cylindrical coordinates or for positivity-...
متن کاملImprovement on spherical symmetry in two-dimensional cylindrical coordinates for a class of control volume Lagrangian schemes
In [14], Maire developed a class of cell-centered Lagrangian schemes for solving Euler equations of compressible gas dynamics in cylindrical coordinates. These schemes use a node-based discretization of the numerical fluxes. The control volume version has several distinguished properties, including the conservation of mass, momentum and total energy and compatibility with the geometric conserva...
متن کاملSecond order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates
In applications such as astrophysics and inertial confine fusion, there are many threedimensional cylindrical-symmetric multi-material problems which are usually simulated by Lagrangian schemes in the two-dimensional cylindrical coordinates. For this type of simulation, a critical issue for the schemes is to keep the spherical symmetry in the cylindrical coordinate system if the original physic...
متن کاملSystematic Derivation of Anisotropic PML Absorbing Media in Cylindrical and Spherical Coordinates
A simple and systematic derivation of anisotropic perfectly matched layers (PML’s) in cylindrical and spherical coordinates is presented. The derivation is based on the analytic continuation of Maxwell’s Equations to complex space. Through field transformations, results for Cartesian anisotropic PML media are recovered and, more importantly, a generalization of the anisotropic PML to cylindrica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 213 شماره
صفحات -
تاریخ انتشار 2006